domingo, 10 de junio de 2018

Elementos de una Instalación Eléctrica

2.1 Conductores eléctricos 


Los conductores eléctricos, son aquellos materiales que ofrecen poca oposición o resistencia al paso de la corriente eléctrica por o a través de ellos. Todos los metales son buenos conductores de la electricidad, sin embargo, unos son mejores que otros. 

 2.1.1 Tipos de conductores 


Cobre 

Después de la plata, el cobre electrolíticamente puro es el mejor conductor eléctrico por que reúne las condiciones deseadas para tal fin, tales como: 

-Alta conductividad 
-Resistencia mecánica 
-Flexibilidad 
-Bajo costo 

Aluminio 

El aluminio es otro buen conductor eléctrico sólo que, por ser menos conductor que el cobre (61% respecto al cobre suave o recocido), para una misma cantidad de corriente se necesita una sección transversal mayor en comparación con conductores de cobre, además, tiene la desventaja de ser quebradizo, se usa con regularidad en líneas de transmisión reforzado en su parte central interior con una guía de acero, sin embargo hoy en día la utilización del aluminio es cada vez más común debido al bajo costo que representa a comparación del cobre.

 2.1.2 Especificaciones de conductores eléctricos 


En el diseño de instalaciones eléctricas una de las tareas más importantes (y más repetitivas) es el cálculo de la sección de los alimentadores, es decir, la especificación de los conductores que suministrarán energía eléctrica a una carga. De la precisión de estos cálculos depende, en buena medida, la seguridad y el buen funcionamiento de la instalación, así como el costo de la inversión inicial y de los gastos de operación y mantenimiento. 

Los principales criterios que se deben considerar para la especificación del conductor son: capacidad de conducción de corriente para las condiciones de instalación, caída de voltaje permitida, capacidad para soportar la corriente de cortocircuito y calibre mínimo permitido para aplicaciones específicas. 

Otros criterios menos importantes son: perdidas por efecto Joule, fuerza de tiro en el proceso de cableado y alimentadores de calibres diferentes que pueden compartir la misma canalización. 

Dentro de las instalaciones eléctricas se ha adoptado un código de colores para identificar fácilmente tanto los conductores portadores de carga (fases) como el conductor puesto a tierra (neutro) y el conductor de puesta a tierra (tierra). 

2.1.3 Código de colores 


En ocasiones se puede llegar a utilizar un conductor de color azul que al igual que el negro y rojo representaría un conductor portador de corriente. Así mismo para el conductor puesto a tierra se puede llegar a utilizar el color gris. 

Para los conductores de puesta a tierra cabe mencionar que el alambre desnudo generalmente es el que se utiliza dentro de las instalaciones eléctricas para asegurar que todas las partes metálicas estén aterrizadas, a diferencia del conductor con aislamiento color verde que es utilizado cuando se necesita una tierra aislada. 

 2.1.4 Capacidad de conducción de corriente 


Los conductores eléctricos están forrados por material aislante, que por lo general contiene materiales orgánicos, Estos forros están clasificados de acuerdo con la temperatura de operación permisible, de tal forma que una misma sección de cobre puede tener diferente capacidad de conducción de corriente, dependiendo del tipo de aislamiento que se seleccione. 

Dentro de la NOM-001-SEDE-2012 en el artículo 310 (conductores para alambrado en general) se tratan los requisitos generales de los conductores y de sus denominaciones de tipo, aislamiento, marcado, resistencia mecánica, ampacidad y usos. 

Para el cálculo del calibre del conductor se aconseja considerar un factor de reserva para un posible crecimiento en años posteriores así como un factor de demanda que es la demanda máxima instalada en algún momento dado. 

Una vez que se tiene la demanda de corriente que tendrá la instalación se deben considerar: 

  • Factor de corrección de temperatura artículo 310-15(b) (2) (a) NOM-001-SEDE-2012 
  • Factor de agrupamiento artículo 310-15(b) (3) (a) NOM-001-SEDE-2012 
  • Así como otros factores de corrección que puedan aplicar especificados dentro del artículo 310 de la NOM-001-SEDE-2012. 


Una vez que se han realizado los cálculos correspondientes para la ampacidad necesaria del conductor, uno puede auxiliarse de la tabla 310-15(b) (16) NOM-001-SEDE-2012 que nos proporciona las ampacidades permisibles en conductores aislados para tensiones hasta 2000 V. Para la correcta selección de un conductor, dentro del artículo 310-104 NOM-001-SEDE-2012 podemos encontrar la tabla 310-104(a) que nos habla del tipo de aislamiento y el lugar donde puede ser utilizado este tipo de cable.

2.2 Canalizaciones eléctricas 


Una canalización es un conducto cerrado diseñado para contener alambres, cables o buses-ducto, pueden ser metálicas o no metálicas. Desde el punto de vista de ventilación sería deseable que todos los conductores estuvieran colocados de tal forma que el aire circulara libremente por su superficie. Sin embargo, debido a las necesidades de los proyectos, normalmente van alojados en algún tipo de ducto: tubos de acero o de materiales plásticos, ductos cuadrados (con o sin bisagra), electro-ductos de distintos fabricantes, charolas especiales y otros. Todos estos tipos de ductos pueden fijarse en las paredes o techos, colocarse en trincheras, o enterrarse directamente. En ocasiones tienen que construirse estructuras especiales o compartirse las existentes con otro tipo de instalaciones. Los soportes deben ser lo suficientemente rígidos para resistir los esfuerzos durante el proceso de cableado. 

Además del aislamiento eléctrico, los conductores, así como los ductos, deben protegerse contra daños mecánicos y apartarse de fuentes de calor. En ambientes corrosivos deberán aplicarse los recubrimientos necesarios a las canalizaciones metálicas. Debido a que la capacidad de conducción se calcula para cierta condición, debe procurarse que los alimentadores tengan las mismas características de ventilación y agrupamiento en todo su trayecto. 

 2.2.1 Tubo conduit 


La tubería conduit es una de las más utilizadas dentro de la construcción de instalaciones tanto residenciales como industriales. Existen varios tipos de tubo conduit hechos con distintos materiales que pueden ser utilizados dependiendo del lugar y las condiciones atmosféricas en donde quiera utilizarse. 

2.2.1.a) Tubo conduit metálico 

Los tubos conduit metálicos, dependiendo del tipo usado, se pueden instalar en exteriores e interiores; en áreas secas o húmedas, dan una excelente protección a los conductores. Los tubos conduit rígidos constituyen de hecho el sistema de canalización más comúnmente usado, ya que prácticamente se pueden usar en todo tipo de atmosferas y para todas las aplicaciones. En los ambientes corrosivos adicionalmente se debe tener cuidado de proteger los tubos con pintura anticorrosiva, ya que la presentación normal de estos tubos es galvanizada. Los tipos más usados son: 

  • De pared gruesa 
  • De pared delgada 
  • Tipo metálico flexible 


#Tubo conduit metálico pesado tipo RMC (NOM-001-SEDE-2012 Artículo 344) 

Este tipo de tubo conduit se suministra en tramos de 3.05m (10 ft) de longitud en acero o aluminio y se encuentra disponible en diámetros desde 1/2’’ (13 mm), hasta 6’’ (152.4 mm), El tubo metálico, de acero normalmente, es galvanizado y además, como se indicó antes, tiene un recubrimiento especial cuando se usa en áreas corrosivas. El tubo conduit rígido puede quedar embebido en las contracciones de concreto (muros o losas), o bien puede ir montado superficialmente con soportes especiales, también puede ir apoyado en bandas de tuberías, algunas recomendaciones generales para su aplicación, son las siguientes: 

  • El número de dobleces en la trayectoria total de un conduit, no debe exceder a 360°. 
  • Siempre que sea posible, y para evitar el efecto de la acción galvánica; las cajas conectores usados con los tubos metálicos, deben ser del mismo material. 
  • Los tubos se deben soportar cada 3.05m (10 pies) y dentro de 90cm (3 pies) entre cada salida.
#Tubo conduit metálico semipesado tipo IMC (NOM-001-SEDE-2012 Artículo 342) 

Se fabrica en diámetros de hasta 4’’ (102 mm) su constitución es similar al tubo conduit rígido de pared gruesa, pero tiene las paredes más delgadas, por lo que tiene mayor espacio interior disponible. Se debe tener mayor cuidado con el doblado de estos tubos, ya que tienden a deformarse, tiene roscados los extremos igual que el de pared gruesa y de hecho sus aplicaciones son similares. Se debe evitar el uso de este tubo a la intemperie o en lugares expuestos a condiciones corrosivas severas, así mismo en lugares mojados donde la canalización este expuesta a la entrada de agua. 

#Tubo conduit metálico ligero tipo EMT (NOM-001-SEDE-2012 Artículo 358) 

Estos tubos son similares a los de pared gruesa, pero tienen su pared interna mucho más delgada, se fabrican en diámetros hasta de 4’’ (102 mm), se puede usar en instalaciones visibles u ocultas, embebido en concreto o embutido en mampostería, pero en lugares secos no expuestos a humedad o ambientes corrosivos. Estos tubos no tienen sus extremos roscados y tampoco usan los mismos conectores que los tubos metálicos rígidos de pared gruesa, de hecho usan sus propios conectores de tipo atornillado. Se debe evitar su uso en lugares donde se esté expuesto a daño mecánico y en lugares húmedos o clasificados como de ambiente corrosivo o peligroso. 

#Tubo conduit metálico flexible tipo FMC (NOM-001-SEDE-2012 Artículo 348) 

Este es un tubo hecho de cinta metálica engargolada (en forma helicoidal), sin recubrimiento. Hay otro tubo metálico que tiene una cubierta exterior de un material no metálico para que sea hermético a los líquidos, este tipo de tubo conduit es útil cuando se hacen instalaciones en áreas donde se dificultan los dobleces con tubo conduit metálico, o bien, en lugares en donde existen vibraciones mecánicas que puedan afectar las uniones rígidas de las instalaciones, este tubo se fabrica con un diámetro mínimo de 13 mm (1/2’’) y un diámetro máximo de 102 mm (4’’).

2.2.1.b) Tubo conduit No metálico 

En la actualidad hay muchos tipos de tubos conduit no metálicos que tienen una gran variedad de aplicaciones y están construidos de distintos materiales como el policloruro de vinilo (PVC), la fibra de vidrio, el polietileno y otros. 

#Tubo conduit rígido de policloruro de vinilo tipo PVC (NOM-001-SEDE-2012 Artículo 352) 

El tubo conduit no metálico más usado en instalaciones residenciales es el PVC, que es un material auto-extinguible, resistente al colapso, a la humedad y a los agentes químicos específicos. Se puede usar en instalaciones ocultas, en instalaciones visibles cuando no se expone el tubo a daño mecánico y en lugares expuestos a los agentes químicos específicos, en donde el material es resistente. Se debe evitar su uso en áreas y locales considerados como peligrosos, para soportar luminarias o equipos y cuando las temperaturas sean mayores a 70 °C. 

Estos tubos se pueden doblar mediante la aplicación de aire caliente o liquido caliente.

Para saber la correcta utilización de cada uno de estos tipos de tubos es necesario verificar si su uso está permitido dentro de la NOM-001-SEDE-2012 en el artículo correspondiente, así mismo para los tubos que se mencionan a continuación: 

  • Tubo conduit metálico flexible hermético a los líquidos tipo LFMC (NOM-001-SEDE-2012 Artículo 350). 
  • Tubo conduit de polietileno de alta densidad tipo HDPE (NOM-001-SEDE-2012 Artículo 353). 
  • Tubo conduit subterráneo no metálico con conductores tipo NUCC (NOM-001-SEDE-2012 Artículo 354). 
  • Tubo conduit de resina termofija reforzada tipo RTRC (NOM-001-SEDE-2012 Artículo 355) 
  • Tubo conduit no metálico flexible hermético a los líquidos tipo LFNC (NOM-001-SEDE-2012 Artículo 356). 
  • Tubo conduit metálico flexible ligero tipo FMT (NOM-001-SEDE-2012 Artículo 360). 
  • Tubo conduit no metálico tipo ENT (NOM-001-SEDE-2012 Artículo 362). 
  • Tubo conduit de polietileno (NOM-001-SEDE-2012 Artículo 364).


Figura 2.- Principales tubos metálicos utilizados en instalaciones eléctricas. 

2.2.1.c) Cálculo y especificaciones del tubo conduit 

Para la especificación del diámetro de tuberías para alojar varios conductores eléctricos aislados (NOM-001-SEDE-2012, capitulo 10 tabla 4), debe observarse cierta relación entre la suma total de las secciones transversales de los conductores (incluyendo su aislamiento) y el área transversal del interior del tubo. Esta relación se conoce como factor de relleno, y la NOM-001-SEDE-2012 señala los valores máximos aceptables en porcentaje:

Con un conductor se tiene (53%), dos (31%) y más de dos conductores (40%), de factor de relleno. 

Para facilitar el trabajo del proyectista se ha incluido en la NOM-001-SEDE-2012 capítulo 10 la tabla 5 (Dimensiones de los conductores aislados y cables para artefactos) que proporciona la sección total en mm2 de los conductores más utilizados dentro de las instalaciones residenciales e industriales, la segunda columna proporciona el área transversal del conductor desnudo y la última columna proporciona el área transversal con aislamiento incluido.

2.2.2 Ductos metálicos 


Estos son otros medios para la canalización de conductores eléctricos. Se usan solamente en las instalaciones eléctricas visibles, ya que no pueden estar embutidos en pared, ni dentro de losas de concreto. Los ductos se fabrican en lámina de acero acanalada de sección cuadrada o rectangular. Su aplicación más común se encuentra en instalaciones industriales y laboratorios. 

Pueden utilizarse tanto para circuitos alimentadores como para circuitos derivados. Su uso no está restringido, ya que también pueden emplearse en edificios multifamiliares y oficinas. La instalación de ductos debe hacerse tomando algunas precauciones, como evitar su cercanía con tuberías transportadoras de agua o cualquier otro fluido. Su uso se restringe para áreas consideradas como peligrosas. 

Se permite un máximo de 30 conductores hasta ocupar un 20% del interior del ducto. En el caso de empalmes o derivaciones puede ser hasta un 75%.

2.2.3 Charolas o Escalerillas 


En el uso de éstas se tienen aplicaciones parecidas a las de los ductos, con algunas limitantes propias de los lugares en los que se hace la instalación. En cuanto a la utilización de charolas o escalerillas, se dan las siguientes recomendaciones: alinear los conductores de manera que queden siempre en posición relativa en todo el trayecto, especialmente los de grueso calibre. 

En el caso de tenerse un gran número de conductores delgados, es conveniente realizar amarres a intervalos de 1.5 a 2 metros aproximadamente, colocando etiquetas de identificación cuando se trate de conductores pertenecientes a varios circuitos. En el caso de conductores de grueso calibre, los amarres pueden hacerse cada 2 o 3 metros. 

En la fijación de conductores que viajan a través de charolas por trayectorias verticales largas es recomendable que los amarres sean hechos con abrazaderas especiales.

2.3 Cajas y accesorios para canalización con tubo


2.3.1 Cajas 


Dentro de las instalaciones eléctricas todas las conexiones de conductores o uniones entre conductores se deben realizar en cajas de conexión aprobadas para tal fin y se deben de instalar en donde puedan ser accesibles para poder hacer cambios en el alambrado o cableado. Por otra parte, todos los apagadores y salidas para lámpara se deben encontrar alojados en cajas, igual que los contactos. 

Las cajas son metálicas y de plástico según se usen para instalación con tubo conduit metálico o con tubo de PVC o polietileno. Las cajas metálicas se fabrican de acero galvanizado de cuatro formas principalmente: cuadradas, octagonales, rectangulares y circulares; se fabrican en varios anchos, profundidad y perforaciones para acceso a tubería; hay perforaciones en los laterales y en el fondo de las cajas. 

El artículo 314 de la NOM-001-SEDE-2012 trata de la instalación y el uso de todas las cajas y cuerpos de tubo conduit utilizados como cajas de salida, de dispositivos, de paso y de empalmes, dependiendo de su utilización; así como de los registros. 

Nota: El artículo 314-4 de la NOM-001-SEDE-2012 menciona que las cajas metálicas deben estar puestas a tierra. 

  • Instalación
Una regla general para el uso de los tipos de cajas, es usar la octagonal para salidas de alumbrado (lámparas) y la rectangular y cuadrada para apagadores y contactos. Las cajas redondas tienen poco uso y en la actualidad solo se encuentran en instalaciones viejas. 

Las cajas no metálicas se pueden usar en: instalaciones visibles sobre aisladores, con cubierta no metálica y en instalaciones con tubo no metálico, salvo algunas excepciones que se mencionan en la NOM-‘001-SEDE-2012 propiamente en el artículo 314-3.

  • Cajas de salida en el piso

 Las cajas de salida para contactos en el piso deben estar especialmente diseñadas para este propósito, según se mencione en el artículo 314-27 (2) (b) de la NOM-001-SEDE-2012. 

 2.3.2 Accesorios para unir Canalizaciones 


Para la instalación de tuberías en cajas de conexiones eléctricas, utilizaremos como principal unión la contratuerca y el monitor.

2.4 Dispositivos de protección 


Se entiende que una instalación está razonablemente protegida si cuenta con un sistema coordinado de elementos que se desempeñe las siguientes funciones: Evitar situaciones peligrosas para las personas, minimizar los daños provocados por condiciones anormales y aislar la zona donde aparece la falla de tal forma que el resto de la instalación continúe operando en las mejores condiciones posibles. 

Dentro de las instalaciones eléctricas los dispositivos de protección más utilizados son los fusibles y los interruptores termomagnéticos. 

 2.4.1 Fusibles 


Los fusibles son los más viejos dispositivos de protección contra sobre corrientes y están constituidos por un solo elemento: Una pequeña cinta metálica hecha de una aleación con un punto de fusión bajo, y de una sección que llevara una corriente especifica indefinidamente, pero que se fundirá cuando una corriente más grande fluye. Los fusibles, como los interruptores operan con una curva inversa de tiempo corriente diseñada para interrumpir rápidamente los corto circuitos, permitiendo por tiempos más largos las sobrecargas temporales o bien las corrientes de arranques de motores.

 Para la selección del fusible es importante considerar la capacidad de corto circuito de este (no la corriente de operación), ya que si sucede un corto que sobrepase esta capacidad, aun cuando el fusible se funda el corto circuito persistirá en la instalación y el propósito de protección del fusible no será cumplido. 

2.4.2 Interruptores 


Un interruptor es un dispositivo que está diseñado para abrir o cerrar un circuito eléctrico por el cual está circulando una corriente. Puede utilizarse como medio de desconexión o conexión y, si está provisto de los dispositivos necesarios, también puede cubrir la función de protección contra sobrecargas y/o cortocircuitos. 

  • Interruptores termomagnéticos 

El interruptor termomagnético se utiliza con mucha frecuencia debido a que es un dispositivo de construcción compacta que puede realizar funciones de conexión o desconexión, protección contra cortocircuito u contra sobrecarga en instalaciones de baja tensión (hasta 600V). 

Está constituido por una caja moldeada con terminales y una palanca para su accionamiento. En el interior están los contactos (uno fijo y otro móvil) que tienen una cámara para extinción del arco. El sistema de disparo trabaja a base de energía almacenada: al operar la palanca para cerrar los contactos, se oprime un resorte donde se almacena la energía; al operar los dispositivos de protección se libera la energía, y la fuerza del resorte separa los contactos. 

La protección contra sobrecarga está constituida por una barra bimetálica que, dependiendo del valor que tenga la corriente así como del tiempo que se mantenga, provoca el disparo que abre los contactos. Esta misma barra está colocada a cierta distancia de una pieza ferromagnética. Cuando la corriente se eleva a valores muy altos (corto circuito) se crean fuerzas electromagnéticas de atracción capaces de provocar que los contactos se abran en un tiempo muy corto, de esta manera se logra la protección contra cortocircuito. Estos interruptores tienen una calibración que en algunos casos solo el fabricante puede modificar.

  • Interruptores de circuito por falla de arco 

Hoy en día existen también otro tipo de interruptores que protegen la instalación contra fallas de arco. Los interruptores contra falla de arco (AFCI) funcionan por supervisar la onda eléctrica y puntualmente abrir (interrumpir) el circuito que ellos atienden si ellos detectan cambios en el diseño de la onda que son características de un arco peligroso. Ellos también deben ser capaces de diferenciar los arcos seguros y normales, tal como aquellos creados cuando un interruptor es encendido o un enchufe es jalado de un receptáculo, de los arcos que pueden causar incendios, un AFCI puede detectar, reconocer, y responder a los cambios muy pequeños en un diseño de la onda. 

Los cortacircuitos AFCI (a la derecha) tienen una apariencia similar a los GFCI (a la izquierda), pero funcionan de forma diferente. Los AFCI disparan cuando detectan una falla de chispa entre los cables fase y neutro. Los GFCI disparan cuando detectan sobrecargas en el circuito, cortacircuitos, o fallas entre los cables fase y tierra.

2.5 Tablero de distribución y centro de carga 


Un tablero eléctrico es una caja o gabinete que contiene los dispositivos de conexión, maniobra, comando, medición, protección, alarma y señalización, con sus cubiertas y soportes correspondientes, para cumplir una función específica dentro de un sistema eléctrico. 

La fabricación o ensamblaje de un tablero eléctrico debe cumplir criterios de diseño y normativas que permitan su funcionamiento correcto una vez energizado, garantizando la seguridad de los operarios y de las instalaciones en las cuales se encuentran ubicados. Los equipos de protección y de control, así como los instrumentos de medición, se instalan por lo general en tableros eléctricos. 

El centro de carga generalmente nos sirve para conectar circuitos independientes de alumbrado y/o de contactos, por lo que se utilizan cables de 14, 12 ó 10 A.W.G., y el espacio que se requiere entre el termomagnético y la pared del centro de carga puede ser reducido. A diferencia del tablero de alumbrado o de distribución, que lo mismo nos sirve para los circuitos de alumbrado y/o contactos, pero además se puede ocupar como alimentador a los centros de carga, en el cual se requiere un cableado de calibre mayor para alimentar esos centros de carga, pudiendo ser estos de calibre 8, 6, 4, 2 ó 1/0 A.W.G. y por lo mismo es necesario un mayor espacio entre el interruptor y el costado del tablero. 

 2.5.1 Tipos de tableros eléctricos 


Según su ubicación en la instalación eléctrica, los tableros eléctricos se clasifican en: 

  • Tablero principal de distribución: Este tablero está conectado a la línea eléctrica principal y de él se derivan los circuitos secundarios. Este tablero contiene el interruptor principal. 
  • Tableros secundarios de distribución: Son alimentados directamente por el tablero principal. Son auxiliares en la protección y operación de sub-alimentadores. 
  • Tableros de paso: Tienen la finalidad de proteger derivaciones que por su capacidad no pueden ser directamente conectadas alimentadores o sub-alimentadores. Para llevar a cabo esta protección cuentan con fusibles. 
  • Gabinete individual del medidor: Este recibe directamente el circuito de alimentación y en él está el medidor de energía desde el cual se desprende el circuito principal. 
  • Tableros de comando: Contienen dispositivos de seguridad y maniobra.

2.5.2 Aplicaciones de los tableros eléctricos según el uso de la energía eléctrica


Como sabemos, la energía eléctrica tiene múltiples usos. Puede tener uso industrial, doméstico, también es posible utilizarla en grandes cantidades para alumbrado público, entre otros. Por otro lado, los tableros eléctricos tienen, según el uso de la energía eléctrica, las siguientes aplicaciones: 

  • Centro de Control de Motores 
  • Subestaciones 
  • Alumbrado 
  • Centros de carga o de uso residencial 
  • Tableros de distribución 
  • Celdas de seccionamiento 
  • Centro de distribución de potencia 
  • Centro de fuerza

2.6 Contactos y Apagadores 


 2.6.1 Contactos 


Los contactos sirven para alimentar diferentes equipos portátiles y van alojados en una caja donde termina la instalación eléctrica fija. 

 2.6.2 Especificaciones de la NOM-001 SEDE 2012 


Los contactos deben estar aprobados y marcados con el nombre o la identificación del fabricante y los valores nominales de corriente y tensión. [Ver Articulo 406-3 (a) de la NOM-001 SEDE 2012]. 

Los contactos deberán tener una capacidad nominal de corriente no menor que la carga que van a alimentar. [Ver Artículo 210-21 de la NOM-001 SEDE 2012]. 

Cuando se conecten dos o más contactos o salidas a un circuito derivado, la capacidad nominal de los contactos debe corresponder a los valores de la Tabla 210-21(b) (3) de la NOM- 001 SEDE 2012. 

Recomendación: Los contactos se localizan aproximadamente de 35 a 40 cm con respecto al nivel del piso (considerándose como piso terminado). 

En caso de cocinas en casas habitación, así como en baños, es común instalar los contactos con la misma caja que los apagadores [Ver Apagador], por lo que la altura de instalación queda determinada por los apagadores, es decir entre 1,2 y 1,35 m sobre el nivel del piso.

2.6.3 Tipos de contactos 


Los contactos pueden ser sencillos o dobles, del tipo polarizado (para conexión a tierra) y a prueba de agua. En los casos más comunes vienen sencillos pero se pueden instalar en cajas combinadas con apagadores. 

Ejemplos de Contactos 

  • Contacto Doble 
Características mínimas del elemento eléctrico 
Tensión nominal (V): 127 
Corriente nominal (A): 15 
Frecuencia nominal (Hz): 60 
Tipo de corriente: Alterna 
Materiales: Terminales de latón y tornillos latonados. Cuerpo de nylon. Para uso de 2 espigas normalizadas y 1 conexión a tierra.

  • Contactos con protección a falla a tierra 
Desconectan el circuito en un tiempo menor a 60 [ms], cuando la diferencia de corriente entre la fase y el neutro es mayor a 5 [mA]. Deben instalarse cuando un aparato se instala a menos de 1.8 [m] de distancia de una fuente húmeda. 

  • Contactos de tierra aislada o de voltaje regulado 

Se utilizan para la reducción del ruido eléctrico (interferencias electromagnéticas), deben de instalarse solo con conductores de puesta a tierra aislados. Los contactos que tienen una conexión aislada del conductor de puesta atierra deben ser identificados con un triángulo anaranjado ubicado en la parte frontal del contacto. [Ver Artículo 406-3 (d) de la NOM-001]

2.6.4 Apagador 


Se define como un interruptor pequeño de acción rápida, operación manual y baja capacidad que se usa por lo general para el control de aparatos pequeños domésticos y comerciales, así como unidades de alumbrado pequeñas. Debido a que la operación es manual, los voltajes nominales no deben exceder a 600 V. 

Los apagadores sencillos para instalaciones residenciales se fabrican para 127 V y corrientes de 15 A. Todos los apagadores se deben instalar de manera tal que se puedan operar de manera manual y desde un lugar fácilmente accesible. 

 2.6.5 Tipo de instalación para apagadores 


Tipo sobrepuesto o de superficie: Los pagadores que se usan en instalaciones visibles con conductores aislados sobre aisladores, se deben colocar sobre bases de material aislante que separen a los conductores por lo menos 12 mm de la superficie sobre la cual se apoya la instalación. 

Tipo embutido: Los apagadores que se alojan en cajas de instalaciones ocultas se deben montar sobre una placa o chasis que esté al ras con la superficie de empotramiento y sujeta a la caja. Los apagadores instalados en cajas metálicas y no puestas a tierra y que pueden ser alcanzadas desde el piso, se deben proveer de tapas de material aislante e incombustible.

2.6.6 Tipos de Apagadores 


Apagador sencillo: También denominado apagador de una vía o monopolar. Con dos terminales que se usan para “prender” o “apagar” una lámpara u otro objeto desde un punto sencillo de localización.

Apagador de tres vías o escalera: Se usan principalmente para controlar lámparas desde dos puntos distintos. Estos apagadores tienen normalmente tres terminales. Su instalación es común en áreas grandes como entradas de casa y pasillo, en donde por comodidad no se requiera regresar a pagar una lámpara, o bien en escaleras en donde se prende un foco en la parte inferior (o superior) y se apaga en la parte superior (o inferior) para no tener que regresar a pagar la lámpara.

2.7 Planta de emergencia 


Las plantas de emergencia constan de un motor de combustión interna acoplado a un generador de corriente alterna. El cálculo de la capacidad de una planta eléctrica se hace en función a las cargas que deben operar permanentemente. Estas cargas deberán quedar en un circuito alimentador y canalizaciones independientes. 

La conexión y desconexión del sistema de emergencia se hace por medio de interruptores de doble tiro (manuales o automáticos) que transfieren la carga del suministro normal a la planta de emergencia. Las plantas automáticas tienen sensores de voltaje que detectan la usencia de voltaje (o caídas más debajo de cierto límite) y envían una señal para que arranque el motor de combustión interna, cuyo sistema de enfriamiento tiene intercalada una resistencia eléctrica que lo mantiene caliente mientras no está funcionando.

2.8 UPS 


Un sistema de alimentación ininterrumpida, SAI, también conocido como UPS (del inglés uninterruptible power supply), es un dispositivo que, gracias a sus baterías u otros elementos almacenadores de energía, puede proporcionar energía eléctrica por un tiempo limitado y durante un apagón a todos los dispositivos que tenga conectados. Otras de las funciones que se pueden adicionar a estos equipos es la de mejorar la calidad de la energía eléctrica que llega a las cargas, filtrando subidas y bajadas de tensión y eliminando armónicos de la red en el caso de usar corriente alterna. 

Los SAI dan energía eléctrica a equipos llamados cargas críticas, como pueden ser aparatos médicos, industriales o informáticos que, como se ha mencionado anteriormente, requieren tener siempre alimentación y que ésta sea de calidad, debido a la necesidad de estar en todo momento operativos y sin fallos.  

2.8.1 Tipos de UPS 


SPS (Standby Power Systems) u Off-line: un SPS se encarga de monitorear la entrada de energía, cambiando a la batería apenas detecta problemas en el suministro eléctrico. Ese pequeño cambio de origen de la energía puede tomar algunos milisegundos. 

UPS On-line: un UPS On-line: Evita esos milisegundos sin energía al producirse un corte eléctrico, pues provee alimentación constante desde su batería y no de forma directa. El UPS online tiene una variante llamada By-pass.

 2.8.2 Componentes típicos de los UPS 


Rectificador: rectifica la corriente alterna de entrada, proveyendo corriente continua para cargar la batería. Desde la batería se alimenta el inversor que nuevamente convierte la corriente en alterna. Cuando se descarga la batería, ésta se vuelve a cargar en un lapso de 8 a 10 horas, por este motivo la capacidad del cargador debe ser proporcional al tamaño de la batería necesaria. 

Batería: se encarga de suministrar la energía en caso de interrupción de la corriente eléctrica. Su capacidad, que se mide en Amperes Hora, depende de su autonomía (cantidad de tiempo que puede proveer energía sin alimentación). 

Inversor: transforma la corriente continua en corriente alterna, la cual alimenta los dispositivos conectados a la salida del UPS. Conmutador (By-Pass): De dos posiciones, que permite conectar la salida con la entrada del UPS (By Pass) o con la salida del inversor. 

2.9 Motores 


Los motores tienen como función principal transformar la energía eléctrica en energía mecánica. Cada motor debe tener su arrancador propio. 

Los motores tipo jaula de ardilla o de inducción (que son los que se encuentran más comúnmente en las instalaciones) son motores eléctricos asíncronos, es decir, su velocidad varia con la aplicación de carga y es siempre menor a la de la sincronismo. La característica que les da este nombre es el tipo de devanado del rotor formado por barras conductoras interconectadas con anillos (en cortocircuito) cuyo diseño es muy parecido a una jaula de ardilla. Estos motores son relativamente económicos pero tiene la desventaja de requerir una corriente muy alta en el momento del arranque (6 a 7 veces la de plena carga o nominal). 

Según el artículo 430-6 de la NOM-001-SEDE-2012 determina las formas de calcular las ampacidades y el valor nominal de los motores. Y de esta manera poder seleccionar el calibre del conductor para el motor, interruptores, protecciones del circuito derivado, cortocircuito y falla a tierra.

 2.9.1 Marcado de un motor 


El artículo 430-7 de la NOM-001-SEDE-2012 nos muestra las características mínimas que deben de estar en las placas características de los motores. Entre las más principales nos encontramos:


  • Tensión y corriente nominal a plena carga  
  • Nombre del fabricante 
  • Frecuencia nominal y numero de fases 
  • Velocidad nominal a plena carga 
  • Temperatura nominal a plena carga 
  • Letra de diseño del motor 
  • Conexiones 
  • Factor de potencia 
  • Factor de servicio 
  • Grado de protección

2.10 Transformador 


El transformador eléctrico es un equipo que se utiliza para cambiar el voltaje de suministro al voltaje requerido. En instalaciones grandes (o complejas) pueden necesitarse varios niveles de voltaje, lo que se logra instalando varios transformadores (normalmente agrupados en subestaciones).

2.10.1 Especificaciones de la NOM-001 SEDE 2012 


Referencia para Transformadores: Articulo 450 Transformadores y Bóvedas para transformadores (incluidos los enlaces del Secundario).de la NOM-001 SEDE 2012.

Artículo 450-11. Marcado. Todos los transformadores deben tener una placa de características en la que conste el nombre del fabricante, el valor nominal en kilovoltamperes, la frecuencia, la tensión del primario y del secundario, la impedancia para los transformadores de 25 kilovoltamperes en adelante, las distancias necesarias para los transformadores con aberturas de ventilación y la cantidad y el tipo del líquido de aislamiento, cuando se use. Además, en la placa de características de todos los transformadores de tipo seco se debe incluir la clase de temperatura del sistema de aislamiento.

2.10.2 Tipos de Transformadores 


  • Transformador Tipo Poste Monofásico y Trifásico 

El transformador tipo poste está diseñado para operar a la intemperie y es aplicable a sistemas de distribución aéreos.

  • Transformador Tipo Pedestal Monofásico y Trifásico 

El transformador tipo pedestal está diseñado para operar en interior y exterior, colocado sobre una base de concreto. Este tipo de transformador es aplicable a sistemas de distribución subterráneos, generalmente utilizados en plazas comerciales, hospitales restaurantes, hoteles, fábricas, etc. donde la seguridad y la apariencia son un factor determinante. Tiene integrado un gabinete cerrado, el cual contiene los accesorios y las terminales para conectarse en sistemas de distribución subterránea. El gabinete cuenta con una abertura en la parte inferior, para el acceso de los cables de baja y alta tensión, así como de las conexiones al sistema de tierra.

  • Transformadores de distribución tipo seco 

Se utilizan en edificios con niveles múltiples o en lugares donde el nivel de seguridad exige que los transformadores no sean inflamables, condición que califica al transformador seco ventajosamente para este servicio.

2.11 Subestaciones Eléctricas 


Definición de la NOM-001-SEDE-2012:

Es un conjunto de equipos (interruptores automáticos, desconectadores, barras principales y transformadores bajo el control de personas calificadas, a través del cual, la energía eléctrica circula con el propósito de modificar sus características o conectar y desconectar.

Debido a la versatilidad que implica una subestación eléctrica también la podemos definir de la siguiente manera: Como un conjunto de equipos, en el que se incluye un lugar adecuado para la conversión, transformación y regulación de la energía eléctrica. Teniendo como principal componente al transformador.

 2.11.1 Equipos de una Subestación Eléctrica 


1. Transformador (o Banco de transformadores).
2. Interruptor de Potencia.
3. Cuchillas desconectadoras.
4. Apartarrayos.
5. Barras Colectoras.
6. Transformadores de Instrumentos (TC y TP).

 2.11.2 Tipos de Subestaciones Eléctricas 


Dependiendo del lugar de instalación se pueden clasificar en: intemperie o exterior, interior y blindadas (de acuerdo a la obra civil).

Subestación de Tipo intemperie: El equipo está expuesto a las condiciones climáticas del lugar, aunque no todo el equipo está en el exterior, (el edificio de control y de protecciones).

No hay comentarios.:

Publicar un comentario